Nuclear reactions
When a neutron is converted into a proton, the process is known as beta decay.
converting the original nuclide into a nuclide isobar
The Beta decay general equation: _Z^AX\ \ \rightarrow_{\ \ \ Z-1}^{\ \ A}Y\ +e^++\ \overline{v}\ +Q
Electron capture equation: e^{+} + ^{A}_{Z} X \rightarrow ^{A}_{Z-1} Y + v
Step 1: Finding the energy released in beta decay( \beta^{+} emission) reaction
Energy released (or Q -value ) Q_1 = \text{ nuclear mass of } ^{A}_{Z} X - \text{nuclear mass of } ^{A}_{Z-1} Y - m_e
When calculating Q-values in a beta decay, convert nuclear mass to atomic mass.
To get the Q value in terms of atomic masses, subtract Z m_{e} from the atomic mass of ^{A}_{Z} X and (Z - 1)m_e from the atomic mass of ^{A}_{Z-1} Y .
[math] Q_1 = [\text{ Atomic mass of } ^{A}_{Z} X - Zm_e - [\text{ Atomic mass of } ^{A}_{Z-1} Y - (Z-1)m_e] - m_e]c^2 [/math]
[math] Q_1 = [\text{ Atomic mass of } ^{A}_{Z} X - \text{Atomic mass of } ^{A}_{Z-1} Y -Zm_e +Zm_e-m_e - m_e] c^2 [/math]
[math]Q_1=\left[\text{ m}\ \left(_Z^AX\right)-m\left(_{Z-1}^A\ Y\right)-2m_e\right]c^2[/math]
Step 2: Finding the energy released in electron capture reaction
Energy released [math] Q_2 = [M (^{A}_{Z} X) + m_e - M (^{A}_{Z-1} Y)]c^2 [/math]
converting nuclear mass to atomic mass.
[math] Q_2 = [m (^{A}_{Z} X) + m_e - Zm_e - m (^{A}_{Z-1} Y) + (Z - 1)m_e]c^2 [/math]
[math] Q_2 = [m (^{A}_{Z} X) + m_e - m_e - m (^{A}_{Z-1} Y)]c^2 [/math]
[math] Q_2 = [m (^{A}_{Z} X) - m (^{A}_{Z-1} Y)]c^2 [/math]
Thus, it can be concluded that Q_1 > 0 and Q_2 > 0 but Q_2 > 0 this does not suggest Q_1 > 0
This means that if \beta^{+} emission is energetically allowable, the electron capture process is also allowable, but not vice versa. This is due to the fact that for an energetically allowable nuclear reaction, the Q-value must be positive.