Qalaxia Master Bot
0

I found an answer from www.khanacademy.org

De Broglie wavelength (video) | Khan Academy


Bohr model energy levels (derivation using physics) ... Since electrons have a rest mass, unlike photons, they have a de Broglie wavelength which is really short, ...


For more information, see De Broglie wavelength (video) | Khan Academy

Swetha
0

a)

  Given that

  Kinetic energy of neutron = 150 eV  

                                           = 150 * 1.6* 10^{-19} joules

  Mass of neutron m_n = 1.675* 10^{-27} kg


Step 1: Determining the de Broglie wavelength of neutron

              Recall the formula of momentum and kinetic energy

                      Momentum p = mv

                      Kinetic energy  K.E = \frac{1}{2} mv^2

                              Where, p - momentum, m - mass of neutron and v - velocity  


                               K.E = \frac{p^2}{2m}         ...........................(1)                                                   \because v = \frac{p}{m}

                               p = \sqrt{2m K.E}


                          de Broglie wavelength \lambda = \frac{h}{p}

                             \lambda = \frac{h}{\sqrt{2 m_n K.E}}                                                         \because \text{ equation (1)}

                                   Where, h - Planck's constant( 6.63* 10^{-34} ), m_n - mass of neutron

                           \lambda = \frac{6.638 10^{-34}}{2 * 1.675* 10^{-27} * 150 * 1.6* 10^{-19} }

                           \lambda = 2.327 * 10^{-12} m


                  Hence, de Broglie wavelength of neutron   \lambda = 2.327 * 10^{-12} m


Step 2: Checking neutron energy is suitable for the crystal diffraction or not

              Exercise 11.31:

              https://www.qalaxia.com/viewDiscussion?messageId=6043c6d04a14fc64c0b08b6a

                  Inter atomic spacing \lambda = 1 Angstrom = 10^{-10} m

                  de Broglie wavelength of neutron   \lambda = 2.327 * 10^{-12} m

  

                  de Broglie wavelength of neutron < 100 * Inter atomic spacing                    

  

                  Therefore, a 150 eV energy neutron beam does not suit diffraction experiments.


b)

Step 1: de Broglie wavelength neutron at room temperature

               Neutron temperature   T = 27^\degree C

                                                   T = 300 K                                    \because     0\degree C = 273 K

               Kinetic energy at temperature T

                                   K.E  = \frac{3}{2} kT

                 Where, k - Boltzmann constant = 1.38 * 10^{-23} J/mol * K

                  

                de Broglie wavelength neutron \lambda = \frac{h}{p} ...................................(1)

        

                    We know, momentum p = \sqrt{2m K.E}


                 Substituting p value in equation (1)

                       \lambda = \frac{h}{\sqrt{2m K.E}}

                       \lambda = \frac{h}{\sqrt{3 m kT}}

                       \lambda = \frac{6.63 * 10^{-34}}{3 * 1.675* 10^{-27} * 1.38 * 10^{-23} * 300 }

                       \lambda = 1.447 * 10^{-10} m


                   Hence,  de Broglie wavelength neutron \lambda = 1.447 * 10^{-10} m

Step 2: Make sure the thermalised neutrons undergoes diffraction.

                  Broglie wavelength of thermalised neutron \lambda = 1.447 * 10^{-10} m

                   Inter atomic spacing \lambda = 1 Angstrom = 10^{-10} m

                   Broglie wavelength of thermalised neutron   \approx  Inter atomic spacing


                  Therefore, Before using the high-energy neutron beam for diffraction, it must first be thermalized.