Qalaxia Master Bot
0

I found an answer from ncbgudi.com

B. Sc.


P壓澀q 蜂裯濰z 垂zs 母澔縵頰擘壓斂 母jZ嶼譫斂社玀髻囡A¢U 蛻鉞氈 Nz 斂 社競斂 §g ... Calculation of Equivalent Mass of oxidizing and reducing agent. ... Thermodynamics and kinetics of organic reactions, energy profile diagram, transition ... Leakage current, relation between α, β & γ, base spreading resistance.


For more information, see B. Sc.

Veda
0

The amount of energy consumed or emitted during a nuclear reaction is known as the Q value. I can be determined from the difference between the masses of the initial reactants and the masses of the final products of a nuclear reaction. (MeV is a unit of energy).


Nuclear reactions

^{223}_{88} Ra \rightarrow ^{209}_{82} Pb + ^{14}_{6} C   

^{223}_{88} Ra \rightarrow ^{219}_{86} Rn + ^{4}_{2} He


Step 1: Calculating the Q - value of first nuclear reactions

Mass of ^{223}_{88} Ra = 223.0183 u

Mass of ^{209}_{82} Pb = 208.98107 u

Mass of ^{14}_{6} C = 14.00324 u


\text{ Q -value } = \Delta m c^2   where, \Delta m - mass defect and c - speed of light  

\Delta m = \text{ mass of } ^{223}_{88} Ra - \text{ mass of } ^{209}_{82} Pb - \text{ mass of } ^{14}_{6} C

\Delta m = 223.0183 u - 208.98107 - 14.00324 u   

\Delta m = 0.03149 u

Q-value = 0.03149 c^2 u

Q-value = 0.03149 c^2 * 931.5 MeV/c^2          \because 1 u = 931.5 MeV/c^2

Q-value = 31.85 MeV

The reaction is (exothermic)energetically allowed  since the Q-value is positive.


Step 2: Calculating the Q - value of second nuclear reactions

Mass of ^{223}_{88} Ra = 223.0183 u

Mass of ^{219}_{86} Rn   = 219.00948

Mass of ^{4}_{2} He = 4.0026

Q - value [math] = [223.0183 u - 219.00948 - 4.0026] c^2 [/math]

Q - value = 0.00642 c^2 * * 931.5 MeV/c^2

Q- value = 5.98 MeV


The reaction is (exothermic)energetically allowed since the Q-value is positive.