Sangeetha Pulapaka

There were many cultural myths surrounding black holes. Many of them perpetuated in television and movies They were protrayed as time travelling funnels to another dimension. It was shown in a cartoon episode of Homer Simpson, as a cosmic vaccum cleaner where everyone used it to dispose of unwanted stuff. Like here is a picture of Bart Simpson disposing his Math Homework in a black hole.  

But what are Black holes? Black holes are objects in the universe with so much mass trapped inside their boundaries that they have incredibly strong gravitational fields. In fact, the gravitational force of a black hole is so strong that nothing can escape once it has gone inside. Most black holes contain many times the mass of our Sun and the heaviest ones can have millions of solar masses.

Black holes, which lurk at the center of most galaxies, are among the most intriguing objects in the universe. Because of their large, extremely compacted mass, even light cannot escape from them. They therefore remain black and mostly invisible. Researchers have nevertheless proven their existence through their gravitational force on visible matter.

A common type of black hole is the type produced by some dying stars. This is called a stellar black hole. A star with a mass greater than 20 times the mass of our Sun may produce a black hole at the end of its life. In the normal life of a star there is a constant tug of war between gravity pulling in and pressure pushing out. Nuclear reactions in the core of the star produce enough energy to push outward. For most of a star's life, gravity and pressure balance each other exactly, and so the star is stable. However, when a star runs out of nuclear fuel, gravity gets the upper hand and the material in the core is compressed even further. The more massive the core of the star, the greater the force of gravity that compresses the material, collapsing it under its own weight. For small stars, when the nuclear fuel is exhausted and there are no more nuclear reactions to fight gravity, the repulsive forces among electrons within the star eventually create enough pressure to halt further gravitational collapse. The star then cools and dies peacefully. This type of star is called the "white dwarf." When a very massive star exhausts its nuclear fuel it explodes as a supernova. The outer parts of the star are expelled violently into space, while the core completely collapses under its own weight.

Newton thought that only objects with mass could produce a gravitational force on each other. Applying Newton's theory of gravity, one would conclude that since light has no mass, the force of gravity couldn't affect it. Einstein discovered that the situation is a bit more complicated than that. First he discovered that gravity is produced by a curved space-time. Then Einstein theorized that the mass and radius of an object (its compactness) actually curves space-time. Mass is linked to space in a way that physicists today still do not completely understand. However, we know that the stronger the gravitational field of an object, the more the space around the object is curved. In other words, straight lines are no longer straight if exposed to a strong gravitational field; instead, they are curved. Since light ordinarily travels on a straight-line path, light follows a curved path if it passes through a strong gravitational field. This is what is meant by "curved space," and this is why light becomes trapped in a black hole. In the 1920's Sir Arthur Eddington proved Einstein's theory when he observed starlight curve when it traveled close to the Sun. This was the first successful prediction of Einstein's General Theory of Relativity.

One way to picture this effect of gravity is to imagine a piece of rubber sheeting stretched out. Imagine that you put a heavy ball in the center of the sheet. The weight of the ball will bend the surface of the sheet close to it. This is a two-dimensional picture of what gravity does to space in three dimensions. Now take a little marble and send it rolling from one side of the rubber sheet to the other. Instead of the marble taking a straight path to the other side of the sheet, it will follow the contour of the sheet that is curved by the weight of the ball in the center. This is similar to how the gravitation field created by an object (the ball) affects light (the marble).